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Preface
Expansion into mid-rise, high-rise and non-residential applications presents one of the most promising avenues  
for the North American wood industry to diversify its end use markets. This may be achieved by:
■	 Designing to new building heights with Light Frame Wood Construction 
■	 Revival of Heavy Timber Frame Construction 
■	 Adoption of Cross-laminated Timber (CLT)
■	 Facilitating Hybrid Construction

There are concerted efforts both in Canada and in the United States towards realizing that goal. In fact, the 
Canadian provinces of British Columbia and Quebec went even further and created specific initiatives to support 
the use of wood in those applications.  

This Handbook is focused on one of these options – adoption of cross-laminated timber (CLT). CLT is an 
innovative wood product that was introduced in the early 1990s in Austria and Germany and has been gaining 
popularity in residential and non-residential applications in Europe. The Research and Standards Subcommittee 
of the industry’s CLT Steering Committee identified CLT as a great addition to the “wood product toolbox” and 
expects CLT to enhance the re-introduction of wood-based systems in applications such as 5- to 10-story buildings 
where heavy timber systems were used a century ago. Several manufacturers have started to produce CLT in North 
America, and their products have already been used in the construction of a number of buildings.

CLT, like other structural wood-based products, lends itself well to prefabrication, resulting in very rapid 
construction, and dismantling at the end of its service life. The added benefit of being made from a renewable 
resource makes all wood-based systems desirable from a sustainability point of view. 

In Canada, in order to facilitate the adoption of CLT, FPInnovations published the Canadian edition of the CLT 
Handbook in 2011 under the Transformative Technologies Program of Natural Resources Canada. The broad 
acceptance of the Canadian CLT Handbook in Canada encouraged this project, to develop a U.S. Edition of the 
CLT Handbook. Funding for this project was received from the Binational Softwood Lumber Council, Forestry 
Innovation Investment in British Columbia, and three CLT manufacturers, and was spearheaded by a Working 
Group from FPInnovations, the American Wood Council (AWC), the U.S. Forest Products Laboratory, APA-The 
Engineered Wood Association and U.S. WoodWorks. The U.S. CLT Handbook was developed by a team of over 
40 experts from all over the world. 

Both CLT handbooks serve two objectives:
■	 Provide immediate support for the design and construction of CLT systems under the alternative or innovative 
	 solutions path in design standards and building codes;
■	 Provide technical information that can be used for implementation of CLT systems as acceptable solutions in 
	 building codes and design standards to achieve broader acceptance.

The implementation of CLT in North America marks a new opportunity for cross-border cooperation, as five 
organizations worked together with the design and construction community, industry, universities, and regulatory 
officials in the development of this Handbook. This multi-disciplinary, peer-reviewed CLT Handbook is designed 
to facilitate the adoption of an innovative wood product to enhance the selection of wood-based solutions in non-
residential and multi-storey construction.

Credible design teams in different parts of the world are advocating for larger and taller wood structures, as high as 
30 stories. When asked, they identified the technical information compiled in this Handbook as what was needed 
for those applications.

A Renaissance in wood construction is underway; stay connected. 
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Abstract 

Cross-laminated timber (CLT) is proving to be a promising solution for wood to compete in building sectors 
where steel and concrete have traditionally predominated. Studies at FPInnovations found that bare CLT floor 
systems differ from traditional lightweight wood joisted floors with typical mass around 4 lb./ft.2 (20 kg/m2) 
and fundamental natural frequency above 15 Hz, and heavy concrete slab floors with a mass above 40 lb./ft.2 
(200 kg/m2) and fundamental natural frequency below 8 Hz. Based on FPInnovations’ test results, bare CLT 
floors were found to have mass varying from approximately 6 lb./ft.2 (30 kg/m2) to 30 lb./ft.2 (150 kg/m2), and 
a fundamental natural frequency above 9 Hz. Due to these special properties, the existing standard vibration 
controlled design methods for lightweight and heavy floors may not be applicable for CLT floors. 

Some CLT manufacturers have recommended that deflection under a uniformly distribution load (UDL) be 
used to control floor vibration problems. Using this approach, the success in avoiding excessive vibrations in CLT 
floors relies mostly on the designers’ judgement. Besides, static deflection criteria can only be used as an indirect 
control method because designers ignore the influence of mass characteristics of the floors. Therefore, a new design 
methodology is needed to determine the vibration controlled spans for CLT floors.  

SINTEF’s extensive CLT floor vibration field study found that FPInnovations’ proposed design method, which 
uses a 225 lb. (1 kN) static deflection and fundamental natural frequency as design parameters to control vibration 
in lightweight joisted wood floor systems, predicted field CLT floor vibration performance that matched well 
with occupants’ expectations. The proposed design method for CLT floors is a modified version of the original 
FPInnovations design method for wood joisted floors. It was based on FPInnovations laboratory study and the 
understanding that limiting the combination of the longitudinal stiffness and mass of CLT floors can effectively 
control CLT floor vibrations. This led to a proposed equation to directly calculate the vibration controlled spans 
from CLT longitudinal stiffness and density. Verification using results from CLT floor testing conducted by 
FPInnovations that included subjective ratings of the floor vibration performance showed that the proposed 
design method predicted well the vibration performance of the tested CLT floors. An impact study showed that 
the vibration controlled spans of CLT floors predicted by the proposed design method were almost identical to 
those calculated by the CLTdesigner software that was developed by researchers of University of Gratz, in Austria. 
Working examples are given to demonstrate the procedure of using the proposed design method. This method can 
be used for bare CLT floors, continuous multi-span CLT floors and CLT floors with a ceiling and topping. 

It is concluded that the proposed design methodology to determine vibration controlled spans of CLT floors  
is simple as it only uses the design properties of CLT panels, and is user-friendly and reliable.  

Wide acceptance of the proposed design method relies on the use and evaluation of the method by products 
manufacturers and designers. Authors of this Chapter are open to feedbacks and ready to evolve the design 
method according to the needs of the manufacturers and designers. 
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1.1	 Understanding Footstep Force
Significant efforts were made towards understanding the nature of footstep force of human normal walking 
(Rainer and Pernica, 1986; Ohlsson, 1991; Ebrahimpour et al., 1994; Keer and Bishop, 2001). Based on these 
findings, it can be concluded that the footstep force generated by walking comprises two components, as described 
in Ohlsson (1991). One component is a short duration impact force induced by the heel of each footstep on 
the floor surface, as illustrated in Figure 1. The duration of the heel impact varies from about 30 ms to 100 ms, 
depending on the conditions and the materials of  the two contact surfaces (that of the floor and the footwear of 
the walking person), and on the weight and gait of the person. The other component is the walking rate, a series  
of footsteps consisting of a wave train of harmonics, at multiples of about 2 Hz (Figure 2).  

1	
Fundamentals 
of CLT Floor 
Vibrations Induced 
by Footsteps  
of Human Normal 
Walking
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Figure 1	  
Measured load-time histories of footsteps from a person walking normally, by Ebrahimpour et al. (1994)  
(X-axis units is second) 
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Figure 2	  
Fourier transform spectrum of the load-time history of normal walking action by a person,  
by Rainer and Pernica (1986) (Y-axis unit is Newton) 

1.2	 Unique Features of CLT Floors – Special Dynamic Properties
Figure 3 illustrates the cross-section of a bare CLT floor. Laboratory and field tests on CLT floors (Gagnon and 
Hu, 2007) have found that the vibration behavior of CLT floors is different from lightweight wood joisted floors 
and heavy concrete slab floors. Some explanations for such differences are given hereafter. Table 1 summarizes 
CLT floor dynamic properties. 
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Figure 3	  
Cross-section of a bare CLT floor 

1.2.1	 Construction

Conventional lightweight wood joisted floors are usually built with joists spaced no more than 24 in. (600 mm) 
o.c. with a wood subfloor of 5/8 in. (15.5 mm) or 11/16 in. (18 mm) thick depending on the joist spacing  
(Figure 4). Conversely, CLT floors have no joists and are solid (Figure 3). The appearance of CLT plates is similar 
to concrete slabs.  

Furthermore, in comparison with joisted floors having the same span and equivalent vibration performance, CLT 
floors are generally shallower than conventional lightweight joisted floors. For example, a 21 ft. (6.5 m) span floor 
can usually be built using 9 in. (230 mm) thick CLT panels. If the same floor is built using conventional wood 
joists, then at least 12 in. (300 mm) deep joists are needed.    
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Figure 4	  
Conventional lightweight wood floor built with joists and subfloor

1.2.2	 Dead Load

CLT floors are heavier than conventional joisted wood floors and lighter than concrete slab floors. Currently, 
thickness of CLT panels available on the market varies from about 2 3/8 in. (60 mm) to 12 5/8 in. (320 mm).  
For floor application, the minimum thickness will be about 4 in. (100 mm). Therefore, the area mass of CLT floors 
varies from about 10 lb./ft.2 (50 kg/m2) to 30 lb./ft.2 (150 kg/m2). Conventional wood joisted floor systems have 
an area mass of about 4 lb./ft.2 (20 kg/m2) for bare floors and about 23 lb./ft.2 (110 kg/m2) for bare floors with  
a 1 1/2 in. (38 mm) thick normal weight concrete topping. Concrete slab floors normally have an area mass above 
40 lb./ft.2 (200 kg/m2).  

1.2.3	 Fundamental Natural Frequency

Due to the specific mass to stiffness characteristic of CLT floors, their vibrations exhibit unique behavior indicated 
by the fundamental natural frequency. The lower bound of the measured fundamental natural frequencies for 
satisfactory bare CLT floors tested in our laboratory was found to be around 10 Hz (Hu, 2012).

We found that above 15 Hz is usually measured for satisfactory bare conventional wood joisted floors and above 
10 Hz for satisfactory bare joisted floors with a concrete topping. The satisfactory concrete slab floors normally 
have a fundamental natural frequency below 8 Hz. 

Humans are generally sensitive to vibration frequency within the range of 4 – 8 Hz. Therefore, the further away 
the natural frequencies of a floor from this sensitive range, the better the vibrational performance perceived  
by occupants. 

1.2.4	 Damping

The measured modal damping ratios of bare CLT floor specimens built with 5- or 7-layer CLT elements tested at 
FPInnovations were about 1% of the critical damping ratio (Hu, 2012). Conventional wood joisted floor systems 
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normally have damping ratios around 3%. Low damping results in the vibrations of CLT floors persisting longer 
and being more annoying to occupants than that in conventional lightweight wood joisted floors. The higher the 
damping, the easier it is to control vibrations. Damping is determined by the material and the construction details 
including structural and non-structural elements, supporting systems, etc. The detailed discussion on structural 
damping and its sources is provided by Ungar (1992). 

Table 1	  
Summary of dynamic characteristics of bare CLT floors with satisfactory vibration performance 

2

About 1%

About 10-30 lb./ft.  (50-150 kg/m )

 

> 9 Hz

2Area Mass 

Fundamental Natural Frequency 

Damping

1.3	 Features of CLT Floor Responses to Footstep Force
The way a floor responds to footstep excitation depends on its inherent properties such as mass, stiffness, and 
capacity to absorb the excitation energy, i.e., damping of the floor system. Understanding the nature of the 
footstep force leads to the conclusion that the two components in the walking excitation can initiate two types of 
vibrations in a floor system, i.e., transient vibration or resonance, depending on the inherent properties of the floor.  

If the fundamental natural frequency of a floor is above 8-10 Hz and far above the footstep frequency and its 
predominant harmonics, then the vibration induced by the footstep forces is most likely dominated by a transient 
response caused by the individual heel impact force from each footstep. The transient vibration disappears quickly, 
and occurs at the harmonics of the floor. The peak values of a transient vibration are mainly governed by the 
stiffness and mass of the system. On the other hand, if the floor fundamental natural frequency is below  
8-10 Hz, and in the range of the footstep frequency and its predominant harmonics, then the floor will most  
likely resonate with one of the harmonics, and the resonance will be constantly maintained by the action  
of the walking excitation. 

The fundamental natural frequency of a floor is governed by the stiffness and mass of the system. As previously 
discussed, the satisfactory bare CLT floors generally have fundamental natural frequency above 9 Hz. Therefore, in 
CLT floors, the footstep forces most likely cause transient vibrations which can be controlled by the stiffness and 
mass of the CLT floors. This understanding forms the basis for the development of the vibration controlled design 
method for CLT floors.  

1.4	 Factors Affecting Human Perception of CLT Floor Vibration
FPInnovations conducted subjective evaluations on series of CLT floors built with different types of joints 
between two adjacent CLT elements (Hu, 2012). It was found that the evaluators did not feel any difference in 
vibration responses when the types of joints were changed, and whether the joints were connected or not. The 
joint types and the joint connections also did not significantly affect the measured dynamic characteristics of  
the test floors. The longitudinal stiffness and mass of CLT floors were the two significant factors affecting human 
perception of CLT floor vibrations. This finding led to the conclusion that a simple design method to control CLT 
floor vibrations can be developed by using only the longitudinal stiffness and mass as the design parameters.  
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2.1	 Uniformly Distributed Load (UDL) Deflection Method 
The uniformly distributed load (UDL) deflection method attempts to control vibrations by limiting the static 
deflection of a CLT floor under a uniform design load. For example, some CLT and indeed other engineered 
wood product (EWP) manufacturers recommend limiting the total UDL deflection to span/400. This approach 
assumes that the allowable deflection for controlling vibration is linearly proportional to the span of a floor.  
It means that the longer the span, the more deflection is allowed. This may explain why it was found in previous 
studies of light-framed floors that the UDL deflection method did not eliminate vibration problems in the long 
span category. 

Therefore, if rationally using this method to avoid excessive vibrations in CLT floors, the engineer needs a good 
judgment to select a proper UDL deflection limit according to the floor spans. A standardized calculation 
procedure is then needed for CLT floor vibration controlled design so that all CLT floors can be economically 
designed with satisfactory in-service performance. 

2.2	 Conventional Design Methods for Wood
and Steel-Concrete Floors 
There are no floor vibration provisions in the U.S. codes. However, the 2005 National Building Code of Canada 
(NBCC) (NRC, 2005) recommends limits for static deflections of lightweight lumber joisted floors under  
225 lb. (1 kN) static concentrated load at floor center. It was shown that this method is only applicable to wood 
joisted floors without topping, i.e., floors having an area mass less than 6 lb./ft.2 (30 kg/m2) (Hu and Gagnon, 2009). 

2	
Review of the 
Existing Design 
Methods for  
CLT Floors
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A design method was developed by Murray et al. (1997) for heavy steel joist-concrete slab floors having 
fundamental natural frequency below 9 Hz and is proposed in the Steel Design Guide (Murray et al., 1997).  
This method limits the peak acceleration of a floor to control the vibrations of heavy floors. 

Table 2 summarizes the scope of the two design methods. Also shown in Table 2 are the types of floor  
construction not currently covered or not covered adequately by existing design methods. As can be noted,  
the scope of the existing design methods in codes does not cover CLT floors. 

Table 2	  
Summary of floor design methods in codes proposed for wood and steel-concrete floors and their scope

 
   

1. Joisted floors
with concrete
topping

2. CLT

Floor Area Mass
lb./ft.  (kg/m )2

 
Floor Natural Frequency

Characteristics (Hz)

2

2005 National
Building Code of

Canada (NRC 2005)

Lightweight
joisted floors

without topping 

3-6 (15-30)

> 15

Currently not
addressed in

Codes

6-30 (30-150)

9-15

Murray et al.
(1997) for

Steel-Concrete 

Steel joist-
concrete slab

> 30 (150)

< 9

Floor Construction

Design Method

2.3	 FPInnovations’ Design Method for Joisted Wood Floors
FPInnovations and the University of New Brunswick (UNB) in Canada developed a design method to control 
vibrations in a broad range of wood joisted floor systems with an area mass varying from 3 lb./ft.2 (15 kg/m2) to  
30 lb./ft.2 (150 kg/m2) and for fundamental natural frequency above 9 Hz (Hu, 2007). The design method uses 
225 lb. (1 kN) static deflection and fundamental natural frequency as design parameters so that the floor stiffness 
and mass are accounted for. 

SINTEF (Homb, 2008), from Norway, has conducted extensive field and laboratory studies on the vibration 
performance of CLT floors. SINTEF found that the FPInnovations’ performance criterion, originally developed 
for lightweight wood joisted floors, predicted the vibration performance of CLT field floors that matched well 
the occupants’ expectation, as illustrated in Figure 5. Each symbol in the figure represents a CLT field floor. If 
the symbol is below the curve, it means that the CLT floor performance is acceptable according to the criterion. 
SINTEF’s field study has shown that the occupants were generally satisfied with the vibration performance of  
the floors tested.  

SINTEF’s study confirmed that FPInnovations’ design criterion for joisted wood floors is applicable to CLT 
floors. However, the equations in FPInnovations’ design method were originally derived from conventional 
wood joisted floors (Chui, 2002) based on ribbed plate theory, not for non-joisted slab floors like CLT floors. 
New equations for calculation of the static deflection at mid-span under a concentrated load of 225 lb. (1 kN) 
and fundamental natural frequency of CLT floors needed to be developed. Meanwhile, the form of the criterion 
shown in Figure 5 also needed to be calibrated to the new equations to achieve a new design criterion for CLT 
floors. The next section provides details on the new proposed design method, including design criterion and 
calculation equations for CLT floors. 
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Figure 5	  
Comparison of FPInnovations’ design criterion for joisted wood floors (Hu & Chui criterion) with  
the vibration performance of field CLT floors studied at SINTEF (Byggforsk, Norway) (Homb, 2008)

Note: The legend of each symbol was the test site name in Norway.
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3
Proposed Design 
Method for  
CLT Floors 

3.1	 Scope
At this point, the proposed new design method to control vibrations of CLT floors is applicable  
to the following situations:

1.	 Floors with or without topping and ceiling;
2.	 Simple or continuous multi-span system;
3.	 Vibrations induced by normal walking;
4.	 Well-supported floors;
5.	 Well-connected CLT panels. 

The design method uses only the structure mass (dead load) in its calculation since FPInnovations’ study found 
that the live load (such as occupants, furniture, etc.) enhances floor vibration performance to some degree; as live 
load changes from time to time, it should not be used as design parameters (Hu, 2007).  

The proposed design method is user-friendly, with only hand calculations required. It is mechanics-based, 
requiring mechanical and physical properties of CLT panels, which are readily available from CLT manufacturers, 
as input properties.

3.2	 Design Criterion
The design criterion is expressed in equation [1]. 

	
[1]

Where:

f = fundamental natural frequency calculated using equation [2] (Hz)
d = point load static deflection at middle span of a simple beam calculated using equation [3] (in.)
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3.3	 Equations for Calculating the Criterion Parameters
The fundamental natural frequency can be obtained as:

			 

[2]

Where:

f			   = fundamental natural frequency of a 1ft. wide CLT panel simply supported at both ends (Hz)
l	 		  = CLT floor span (ft.) 

	 = apparent stiffness in the span direction for a 1 ft. wide panel (lb.-in.2) 
			   = apparent stiffness is the effective stiffness, EIeff, adjusted for the effects of shear deformation 
ρ 			   = specific gravity of CLT (=1.0625 x oven-dry specific gravity of wood used for fabricating the CLT)
A 			   = cross sectional area of a 1 ft. wide CLT panel, i.e. thickness x 12 in. wide (in.2)

				  
[3]

Where:

P 	 = 68.56 lb.

3.4	 Simple Form of Design Method
Substituting equations [2] and [3] into equation [1], we obtain the simple form of the design method  
expressed by equation [4].  

			 
[4]

Using equation [4], we can determine the vibration controlled spans for CLT floors directly from the apparent 
stiffness in the span direction, density and cross-section area of 1 ft. wide CLT panels. 

3.5	 Verification
The design method was verified using FPInnovations’ tests data (Hu, 2012) obtained from a limited laboratory 
study on floors built with 5- or 7-layer CLT panels having three thicknesses: 5 1/2 in. (140 mm), 7 3/16 in.  
(182 mm) and 9 in. (230 mm). In these tests, the performance of each floor was rated by a group of participants 
(subjective evaluation) using the rating scale and procedure originally developed at FPInnovations in the 1970’s 
(Onysko and Bellosillo, 1978), evolved in the 1990’s by Hu (1997), and recently simplified by Hu and Gagnon 
(2010). Figure 6 shows one CLT floor built in the laboratory for the vibration tests and subjective evaluation.

A point load of 225 lb. (1 kN) is assumed to be resisted by a 3.28 ft. (1 m) wide strip. That converts to  
68.56 lb./ft. The static deflection and fundamental natural frequency of the loaded strip were calculated  
using equations [3] and [2] respectively. This allowed for the calculation of the performance parameter  
using equation [1].
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Figure 6	  
CLT floor built in laboratory for the vibration tests and subjective evaluation

The comparison was also plotted on Figure 7. In the graph, each symbol represents a CLT floor while the curve 
is the design criterion defined by equation [1]. If the symbol is below the curve, it means the floor vibration 
performance is satisfactory and vice visa. The plot clearly demonstrates the reliability of the proposed design 
method for CLT floors. 
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Figure 7	  
Predicted CLT floor vibration performance by the proposed design method  
vs. subjective rating by participants

3.6	 Impact Study
3.6.1	 Comparing Proposed Design Method with UDL Deflection Method

The vibration controlled CLT floor spans determined using the proposed design method were used to derive the 
equivalent UDL deflection limits on products from KLH in Austria (2008) as an example. The total design load 
was 81.5 lb./ft.2 (3.9 kN/m2), which consisted of 31.3 lb./ft.2 (1.5 kN/m2) dead load and 50.2 lb./ft.2 (2.4 kN/m2) 
live load. The UDL deflection limit would be span/400. 

Table 3	  
Vibration controlled CLT floor spans determined using the proposed design method and equivalent UDL 
deflection criterion

Type of CLT

5-layer (5s)

5-layer (5s)

7-layer (7ss)

Thickness

(in.)

5 1/2

7 3/16

9

15.6

18.0

23.0

Vibration Controlled
Span, L

(ft.)

Equivalent UDL
Criterion

Span/417

Span/497

Span/606

Note: 
5s stands for 5-layer CLT with single longitudinal layers on faces of panel (KLH, 2008)
7ss stands for 7-layer CLT with double longitudinal layers on faces of panel (KLH, 2008)
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As shown in Table 3, according to the proposed design method, more stringent UDL deflection limits should be 
imposed for longer span floors. This is more rational than the traditional approach of adopting a fixed ratio, such 
as span/400, for all spans.  

3.6.2	 Comparing CLT Floor Spans Determined Using the Proposed Design Method 
with Spans Determined Using the CLTdesigner Software 

The vibration controlled CLT floor spans determined using the proposed design method were compared with 
the spans determined using CLTdesigner (Holz.Bau Forschungs GmbH, 2010), a software developed at the Graz 
University of Technology, Austria (Schickhofer and Thiel, 2010). Table 4 provides the comparison. 

Table 4	  
Vibration controlled CLT floor spans determined using the new design method  
vs. spans determined using the CLTdesigner software

-
CLT Thickness

(in.)
 

CLTdesigner Proposed Span for
1% Damping and Floors without Topping

(Schickhofer and Thiel, 2010)
(ft.-in.)

FPInnovations’ Design
Method Proposed Span

(ft.-in.)

3 15/16

4 3/4

5 3/4

 6 5/16

7 1/8

7 7/8

8 11/16

 9 7/16

11-7

12-4

14-6

15-7

  16-10

18-7

19-4

20-3

11-9

12-4

14-9

15-9

 16-11

18-7

19-1

20-0

As shown in Table 4, the vibration controlled spans of bare CLT floors predicted by the proposed design method 
are almost the same as the spans determined using the CLTdesigner software. 

3.7	 Work Example for the Design Method
Example is given below to calculate the vibration controlled spans of two CLT floors using the simple form  
of the proposed design method given in equation [4].  

This example demonstrates the procedure to determine the vibration controlled spans for floors using CLT panels 
with the given EIeff and GAeff. The apparent bending stiffness EIapp can be determined using the following equation:

		

[5]



ChapTER 7	 Vibration 
	 14

Design values of the CLT panel properties are provided by APA (PRG 320, 2011):

-	 Grade = E1
-	 Thickness = 6 7/8 in. (0.175 m)
-	 Specific gravity = 0.56 (560.66 kg/m3)
-	 EIeff = 440 x 106 lb.-in.2/ft. (4.140 x 106 N-m2/m)
-	 GAeff = 0.92 x 106 lb./ft. (1.343 x 107 N/m)
-	 l = vibration controlled span (ft.)

Calculation of the vibration controlled span for the above floor follows the steps below.

Step 1: Calculate the first trial span, assuming that the trial span is 30 times the thickness; this leads to the first 
trial span of 17.188 ft. (5.25 m).

Step 2: Insert the first trial span of 17.188 ft. (5.25 m) into equation [5] to determine the trial apparent stiffness, 
EIapp, from the design value of the EIeff  and GAeff; this leads to the new span of 17.100 ft.: 

 = 3.895x108 lb.-in.2/ft.

Step 3: Insert the value of trial EIapp, the design values of density, thickness and 1 ft. width of the CLT panel into 
equation [4] to calculate the vibration controlled span; this leads to the new span of 17.100 ft.

Step 4: If the calculated new span in step 3 differs from the previous span, then repeat steps 2 and 3 using the 
calculated span in step 3 as the new trial span until the solution converges. The iterative calculation procedure can 
be implemented into an Excel spreadsheet, as shown in Table 5.

Table 5	  
Excel calculation for the example 

    
 

  
6

6  

 

 

 

6

22

appThickness

(in.)

6.875

6.875

6.875

Trial Span

(ft.)

17.188

17.100

17.090

440

440

440

(x10  lb.-
in. /ft.)

effEI effGA

0.92

0.92

0.92

(x10  lb./ft.)

EI     
Equation [5]

(x10  lb.-
in. /ft.)

389.5

389.1

389.0

0.56

0.56

0.56

Specific
Gravity

New Span
Equation [4]

(ft.)

17.10

17.09

17.09

Finally, examining the iteration results shown in Table 5, we found that the solution converges to a span  
of 17.09 ft., which is the vibration controlled span for the CLT floor built with the 6 7/8 in. thick panels. 
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4.1	 Continuous Multi-span CLT Floors
FPInnovations and University of New Brunswick studies found that, in comparison with the single span floors,  
the continuous multi-span floors are stiffer, which is indicated by the reduced 225 lb. (1 kN) static deflection.  
But the increase in stiffness of the floor is not very significant (Hu, 2007). Therefore, we have recommended that,  
for continuous multi-span CLT floors, the design equation [4] be used for estimating the vibration controlled 
CLT floor, assuming that the floor is a single span system with its span equal to the longest span in the actual 
multi-span system. Due to the significant flank transmission through the continuous multi-span floor systems,  
it is recommended to avoid using the continuous multi-span CLT floor system over two adjacent units in multi-
family dwellings. 

4.2	 CLT Floor with a Suspended Ceiling
FPInnovations’ laboratory study found that adding a suspended ceiling to a CLT floor increased the damping 
ratio to 2-3%, and the mass of the CLT floor (Hu, 2012). The overall level of the vibration performance was not 
negatively affected according to the evaluators. Therefore, equation [4] can be used for CLT floors with suspended 
ceiling based on the bare floor properties.  

4.3	 CLT Floor with a Suspended Ceiling 
and a Lightweight Overlay 
FPInnovations’ laboratory study also found that adding a suspended ceiling and a lightweight overlay such as 
wood panels onto a CLT floor increased the damping ratio to 2-3%, as well as stiffness and the mass of the CLT 
floor (Hu, 2012). The overall level of the vibration performance was not changed according to the evaluators. 
Therefore, equation [4] can be used for CLT floors with both a suspended ceiling and a lightweight overlay based 
on the bare floor properties.  

4	
Approaches for 
Special Cases
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4.4	 CLT Floor with a Heavy Topping [>20 lb./ft.2 (100 kg/m2)]
It is known that without a suspended ceiling, a heavy topping is normally necessary for CLT floor to achieve 
the satisfactory airborne and impact sound insulation. The heavy topping adds significant mass to the floor 
system, and reduces the fundamental natural frequency to below 9 Hz. Based on the experience of the authors, 
even though the topping increases the floor stiffness, the low first natural frequency makes the floor susceptible 
to annoying vibrations (Hu, 2007). For lightweight wood-joisted floor systems, the design method requires to 
reduce the spans of the joisted floors after a heavy cementitious topping is added (Hu, 2007). A similar approach 
should be applied to CLT floors with a heavy topping. As an interim measure, it is recommended that the span be 
calculated using equation [4] for vibration controlled design of such heavy topping CLT floor system, assuming 
the bare CLT floor mass and stiffness be reduced by 10%. This interim recommendation will be further refined 
through laboratory study.  
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It is concluded that the proposed design method to determine vibration controlled spans of CLT floors is 
mechanics-based, utilizes the fundamental mechanical properties of CLT, and is user-friendly and reliable.
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5	
Conclusion
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Wide acceptance of the proposed design method relies on its use and evaluation by product designers and 
manufacturers. Authors of this Chapter welcome feedback on the proposed design method. From a vibration 
control point of view, the perceived low damping ratio can be one of the major weaknesses of bare CLT floors.  
Any measures for increasing the damping ratio through CLT product design and floor construction detail will 
enhance the vibration performance of CLT floor systems.

6	
Recommendations
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